當前,我國人工智能產業發展勢頭良好、空間巨大。《行動計劃》按照“系統布局、重點突破、協同創新、開放有序”的原則,提出了四方面主要任務:一是重點培育和發展智能網聯汽車、智能服務機器人、智能無人機、醫療影像輔助診斷系統、視頻圖像身份識別系統、智能語音交互系統、智能翻譯系統、智能家居產品等智能化產品,推動智能產品在經濟社會的集成應用。二是重點發展智能傳感器、神經網絡芯片、開源開放平臺等關鍵環節,夯實人工智能產業發展的軟硬件基礎。三是深化發展智能制造,鼓勵新一代人工智能技術在工業領域各環節的探索應用,提升智能制造關鍵技術裝備創新能力,培育推廣智能制造新模式。四是構建行業訓練資源庫、標準測試及知識產權服務平臺、智能化網絡基礎設施、網絡安全保障等產業公共支撐體系,完善人工智能發展環境。

《行動計劃》將充分利用現有資源和手段,加強部省聯動,依托國家新型工業化產業示范基地建設等工作,支持有條件的地區發揮自身資源優勢,培育一批人工智能領軍企業,探索建設人工智能產業集聚區。推動建設相關領域的制造業創新中心,設立重點實驗室,鼓勵行業合理開放數據,支持重點行業和關鍵領域加大應用力度,促進人工智能產業突破發展。力爭到2020年,實現“人工智能重點產品規模化發展、人工智能整體核心基礎能力顯著增強、智能制造深化發展、人工智能產業支撐體系基本建立”的目標。

為保障各項重點任務的落實,《行動計劃》還提出了五方面保障措施,包括加強組織實施、加大支持力度、鼓勵創新創業、加快人才培養、優化發展環境等,推動形成良好的發展環境,保障《行動計劃》的順利實施,切實推動人工智能產業發展,助力實體經濟轉型升級。

esmc12151649

促進新一代人工智能產業發展三年行動計劃

(2018-2020年)

當前,新一輪科技革命和產業變革正在萌發,大數據的形成、理論算法的革新、計算能力的提升及網絡設施的演進驅動人工智能發展進入新階段,智能化成為技術和產業發展的重要方向。人工智能具有顯著的溢出效應,將進一步帶動其他技術的進步,推動戰略性新興產業總體突破,正在成為推進供給側結構性改革的新動能、振興實體經濟的新機遇、建設制造強國和網絡強國的新引擎。為落實《新一代人工智能發展規劃》,深入實施“中國制造2025”,抓住歷史機遇,突破重點領域,促進人工智能產業發展,提升制造業智能化水平,推動人工智能和實體經濟深度融合,制訂本行動計劃。

一.總體要求

(一)指導思想

全面貫徹落實黨的十九大精神,以習近平新時代中國特色社會主義思想為指導,按照“五位一體”總體布局和“四個全面”戰略布局,認真落實黨中央、國務院決策部署,以信息技術與制造技術深度融合為主線,推動新一代人工智能技術的產業化與集成應用,發展高端智能產品,夯實核心基礎,提升智能制造水平,完善公共支撐體系,促進新一代人工智能產業發展,推動制造強國和網絡強國建設,助力實體經濟轉型升級。

(二)基本原則

系統布局。把握人工智能發展趨勢,立足國情和各地區的產業現實基礎,頂層引導和區域協作相結合,加強體系化部署,做好分階段實施,構建完善新一代人工智能產業體系。

重點突破。針對產業發展的關鍵薄弱環節,集中優勢力量和創新資源,支持重點領域人工智能產品研發,加快產業化與應用部署,帶動產業整體提升。

協同創新。發揮政策引導作用,促進產學研用相結合,支持龍頭企業與上下游中小企業加強協作,構建良好的產業生態。

開放有序。加強國際合作,推動人工智能共性技術、資源和服務的開放共享。完善發展環境,提升安全保障能力,實現產業健康有序發展。

(三)行動目標

通過實施四項重點任務,力爭到2020年,一系列人工智能標志性產品取得重要突破,在若干重點領域形成國際競爭優勢,人工智能和實體經濟融合進一步深化,產業發展環境進一步優化。

——人工智能重點產品規模化發展,智能網聯汽車技術水平大幅提升,智能服務機器人實現規模化應用,智能無人機等產品具有較強全球競爭力,醫療影像輔助診斷系統等擴大臨床應用,視頻圖像識別、智能語音、智能翻譯等產品達到國際先進水平。

——人工智能整體核心基礎能力顯著增強,智能傳感器技術產品實現突破,設計、代工、封測技術達到國際水平,神經網絡芯片實現量產并在重點領域實現規模化應用,開源開發平臺初步具備支撐產業快速發展的能力。

——智能制造深化發展,復雜環境識別、新型人機交互等人工智能技術在關鍵技術裝備中加快集成應用,智能化生產、大規模個性化定制、預測性維護等新模式的應用水平明顯提升。重點工業領域智能化水平顯著提高。

——人工智能產業支撐體系基本建立,具備一定規模的高質量標注數據資源庫、標準測試數據集建成并開放,人工智能標準體系、測試評估體系及安全保障體系框架初步建立,智能化網絡基礎設施體系逐步形成,產業發展環境更加完善。

二.培育智能產品

以市場需求為牽引,積極培育人工智能創新產品和服務,促進人工智能技術的產業化,推動智能產品在工業、醫療、交通、農業、金融、物流、教育、文化、旅游等領域的集成應用。發展智能控制產品,加快突破關鍵技術,研發并應用一批具備復雜環境感知、智能人機交互、靈活精準控制、群體實時協同等特征的智能化設備,滿足高可用、高可靠、安全等要求,提升設備處理復雜、突發、極端情況的能力。培育智能理解產品,加快模式識別、智能語義理解、智能分析決策等核心技術研發和產業化,支持設計一批智能化水平和可靠性較高的智能理解產品或模塊,優化智能系統與服務的供給結構。推動智能硬件普及,深化人工智能技術在智能家居、健康管理、移動智能終端和車載產品等領域的應用,豐富終端產品的智能化功能,推動信息消費升級。著重在以下領域率先取得突破:

(一)智能網聯汽車。支持車輛智能計算平臺體系架構、車載智能芯片、自動駕駛操作系統、車輛智能算法等關鍵技術、產品研發,構建軟件、硬件、算法一體化的車輛智能化平臺。到2020年,建立可靠、安全、實時性強的智能網聯汽車智能化平臺,形成平臺相關標準,支撐高度自動駕駛(HA級)。

(二)智能服務機器人。支持智能交互、智能操作、多機協作等關鍵技術研發,提升清潔、老年陪護、康復、助殘、兒童教育等家庭服務機器人的智能化水平,推動巡檢、導覽等公共服務機器人以及消防救援機器人等的創新應用。發展三維成像定位、智能精準安全操控、人機協作接口等關鍵技術,支持手術機器人操作系統研發,推動手術機器人在臨床醫療中的應用。到2020年,智能服務機器人環境感知、自然交互、自主學習、人機協作等關鍵技術取得突破,智能家庭服務機器人、智能公共服務機器人實現批量生產及應用,醫療康復、助老助殘、消防救災等機器人實現樣機生產,完成技術與功能驗證,實現20家以上應用示范。

(三)智能無人機。支持智能避障、自動巡航、面向復雜環境的自主飛行、群體作業等關鍵技術研發與應用,推動新一代通信及定位導航技術在無人機數據傳輸、鏈路控制、監控管理等方面的應用,開展智能飛控系統、高集成度專用芯片等關鍵部件研制。到2020年,智能消費級無人機三軸機械增穩云臺精度達到0.005 度,實現 360 度全向感知避障,實現自動智能強制避讓航空管制區域。

(四)醫療影像輔助診斷系統。推動醫學影像數據采集標準化與規范化,支持腦、肺、眼、骨、心腦血管、乳腺等典型疾病領域的醫學影像輔助診斷技術研發,加快醫療影像輔助診斷系統的產品化及臨床輔助應用。到2020年,國內先進的多模態醫學影像輔助診斷系統對以上典型疾病的檢出率超過95%,假陰性率低于1%,假陽性率低于5%。

(五)視頻圖像身份識別系統。支持生物特征識別、視頻理解、跨媒體融合等技術創新,發展人證合一、視頻監控、圖像搜索、視頻摘要等典型應用,拓展在安防、金融等重點領域的應用。到2020年,復雜動態場景下人臉識別有效檢出率超過97%,正確識別率超過90%,支持不同地域人臉特征識別。

(六)智能語音交互系統。支持新一代語音識別框架、口語化語音識別、個性化語音識別、智能對話、音視頻融合、語音合成等技術的創新應用,在智能制造、智能家居等重點領域開展推廣應用。到2020年,實現多場景下中文語音識別平均準確率達到96%,5米遠場識別率超過92%,用戶對話意圖識別準確率超過90%。

(七)智能翻譯系統。推動高精準智能翻譯系統應用,圍繞多語言互譯、同聲傳譯等典型場景,利用機器學習技術提升準確度和實用性。到2020年,多語種智能互譯取得明顯突破,中譯英、英譯中場景下產品的翻譯準確率超過85%,少數民族語言與漢語的智能互譯準確率顯著提升。

(八)智能家居產品。支持智能傳感、物聯網、機器學習等技術在智能家居產品中的應用,提升家電、智能網絡設備、水電氣儀表等產品的智能水平、實用性和安全性,發展智能安防、智能家具、智能照明、智能潔具等產品,建設一批智能家居測試評價、示范應用項目并推廣。到2020年,智能家居產品類別明顯豐富,智能電視市場滲透率達到90%以上,安防產品智能化水平顯著提升。

三.突破核心基礎

加快研發并應用高精度、低成本的智能傳感器,突破面向云端訓練、終端應用的神經網絡芯片及配套工具,支持人工智能開發框架、算法庫、工具集等的研發,支持開源開放平臺建設,積極布局面向人工智能應用設計的智能軟件,夯實人工智能產業發展的軟硬件基礎。著重在以下領域率先取得突破:

(一)智能傳感器。支持微型化及可靠性設計、精密制造、集成開發工具、嵌入式算法等關鍵技術研發,支持基于新需求、新材料、新工藝、新原理設計的智能傳感器研發及應用。發展市場前景廣闊的新型生物、氣體、壓力、流量、慣性、距離、圖像、聲學等智能傳感器,推動壓電材料、磁性材料、紅外輻射材料、金屬氧化物等材料技術革新,支持基于微機電系統(MEMS)和互補金屬氧化物半導體(CMOS)集成等工藝的新型智能傳感器研發,發展面向新應用場景的基于磁感、超聲波、非可見光、生物化學等新原理的智能傳感器,推動智能傳感器實現高精度、高可靠、低功耗、低成本。到2020年,壓電傳感器、磁傳感器、紅外傳感器、氣體傳感器等的性能顯著提高,信噪比達到70dB、聲學過載點達到135dB的聲學傳感器實現量產,絕對精度100Pa以內、噪音水平0.6Pa以內的壓力傳感器實現商用,弱磁場分辨率達到1pT的磁傳感器實現量產。在模擬仿真、設計、MEMS工藝、封裝及個性化測試技術方面達到國際先進水平,具備在移動式可穿戴、互聯網、汽車電子等重點領域的系統方案設計能力。

(二)神經網絡芯片。面向機器學習訓練應用,發展高性能、高擴展性、低功耗的云端神經網絡芯片,面向終端應用發展適用于機器學習計算的低功耗、高性能的終端神經網絡芯片,發展與神經網絡芯片配套的編譯器、驅動軟件、開發環境等產業化支撐工具。到2020年,神經網絡芯片技術取得突破進展,推出性能達到128TFLOPS(16位浮點)、能效比超過1TFLOPS/w的云端神經網絡芯片,推出能效比超過1T OPS/w(以16位浮點為基準)的終端神經網絡芯片,支持卷積神經網絡(CNN)、遞歸神經網絡(RNN)、長短期記憶網絡(LSTM)等一種或幾種主流神經網絡算法;在智能終端、自動駕駛、智能安防、智能家居等重點領域實現神經網絡芯片的規模化商用。

(三)開源開放平臺。針對機器學習、模式識別、智能語義理解等共性技術和自動駕駛等重點行業應用,支持面向云端訓練和終端執行的開發框架、算法庫、工具集等的研發,支持開源開發平臺、開放技術網絡和開源社區建設,鼓勵建設滿足復雜訓練需求的開放計算服務平臺,鼓勵骨干龍頭企業構建基于開源開放技術的軟件、硬件、數據、應用協同的新型產業生態。到2020年,面向云端訓練的開源開發平臺支持大規模分布式集群、多種硬件平臺、多種算法,面向終端執行的開源開發平臺具備輕量化、模塊化和可靠性等特征。

四.深化發展智能制造

深入實施智能制造,鼓勵新一代人工智能技術在工業領域各環節的探索應用,支持重點領域算法突破與應用創新,系統提升制造裝備、制造過程、行業應用的智能化水平。著重在以下方面率先取得突破:

(一)智能制造關鍵技術裝備。提升高檔數控機床與工業機器人的自檢測、自校正、自適應、自組織能力和智能化水平,利用人工智能技術提升增材制造裝備的加工精度和產品質量,優化智能傳感器與分散式控制系統(DCS)、可編程邏輯控制器(PLC)、數據采集系統(SCADA)、高性能高可靠嵌入式控制系統等控制裝備在復雜工作環境的感知、認知和控制能力,提高數字化非接觸精密測量、在線無損檢測系統等智能檢測裝備的測量精度和效率,增強裝配設備的柔性。提升高速分揀機、多層穿梭車、高密度存儲穿梭板等物流裝備的智能化水平,實現精準、柔性、高效的物料配送和無人化智能倉儲。

到2020年,高檔數控機床智能化水平進一步提升,具備人機協調、自然交互、自主學習功能的新一代工業機器人實現批量生產及應用;增材制造裝備成形效率大于450cm3/h,連續工作時間大于240h;實現智能傳感與控制裝備在機床、機器人、石油化工、軌道交通等領域的集成應用;智能檢測與裝配裝備的工業現場視覺識別準確率達到90%,測量精度及速度滿足實際生產需求;開發10個以上智能物流與倉儲裝備。

(二)智能制造新模式。鼓勵離散型制造業企業以生產設備網絡化、智能化為基礎,應用機器學習技術分析處理現場數據,實現設備在線診斷、產品質量實時控制等功能。鼓勵流程型制造企業建設全流程、智能化生產管理和安防系統,實現連續性生產、安全生產的智能化管理。打造網絡化協同制造平臺,增強人工智能指引下的人機協作與企業間協作研發設計與生產能力。發展個性化定制服務平臺,提高對用戶需求特征的深度學習和分析能力,優化產品的模塊化設計能力和個性化組合方式。搭建基于標準化信息采集的控制與自動診斷系統,加快對故障預測模型和用戶使用習慣信息模型的訓練和優化,提升對產品、核心配件的生命周期分析能力。

到2020年,數字化車間的運營成本降低20%,產品研制周期縮短20%;智能工廠產品不良品率降低10%,能源利用率提高10%;航空航天、汽車等領域加快推廣企業內外并行組織和協同優化新模式;服裝、家電等領域對大規模、小批量個性化訂單全流程的柔性生產與協作優化能力普遍提升;在裝備制造、零部件制造等領域推進開展智能裝備健康狀況監測預警等遠程運維服務。

五.構建支撐體系

面向重點產品研發和行業應用需求,支持建設并開放多種類型的人工智能海量訓練資源庫、標準測試數據集和云服務平臺,建立并完善人工智能標準和測試評估體系,建設知識產權等服務平臺,加快構建智能化基礎設施體系,建立人工智能網絡安全保障體系。著重在以下領域率先取得突破:

(一)行業訓練資源庫。面向語音識別、視覺識別、自然語言處理等基礎領域及工業、醫療、金融、交通等行業領域,支持建設高質量人工智能訓練資源庫、標準測試數據集并推動共享,鼓勵建設提供知識圖譜、算法訓練、產品優化等共性服務的開放性云平臺。到2020年,基礎語音、視頻圖像、文本對話等公共訓練數據量大幅提升,在工業、醫療、金融、交通等領域匯集一定規模的行業應用數據,用于支持創業創新。

(二)標準測試及知識產權服務平臺。建設人工智能產業標準規范體系,建立并完善基礎共性、互聯互通、安全隱私、行業應用等技術標準,鼓勵業界積極參與國際標準化工作。構建人工智能產品評估評測體系,對重點智能產品和服務的智能水平、可靠性、安全性等進行評估,提升人工智能產品和服務質量。研究建立人工智能技術專利協同運用機制,支持建設專利協同運營平臺和知識產權服務平臺。到2020年,初步建立人工智能產業標準體系,建成第三方試點測試平臺并開展評估評測服務;在模式識別、語義理解、自動駕駛、智能機器人等領域建成具有基礎支撐能力的知識產權服務平臺。

(三)智能化網絡基礎設施。加快高度智能化的下一代互聯網、高速率大容量低時延的第五代移動通信(5G)網、快速高精度定位的導航網、泛在融合高效互聯的天地一體化信息網部署和建設,加快工業互聯網、車聯網建設,逐步形成智能化網絡基礎設施體系,提升支撐服務能力。到2020年,全國90%以上地區的寬帶接入速率和時延滿足人工智能行業應用需求,10家以上重點企業實現覆蓋生產全流程的工業互聯網示范建設,重點區域車聯網網絡設施初步建成。

(四)網絡安全保障體系。針對智能網聯汽車、智能家居等人工智能重點產品或行業應用,開展漏洞挖掘、安全測試、威脅預警、攻擊檢測、應急處置等安全技術攻關,推動人工智能先進技術在網絡安全領域的深度應用,加快漏洞庫、風險庫、案例集等共享資源建設。到2020年,完善人工智能網絡安全產業布局,形成人工智能安全防控體系框架,初步建成具備人工智能安全態勢感知、測試評估、威脅信息共享以及應急處置等基本能力的安全保障平臺。

六.保障措施

(一)加強組織實施

強化部門協同和上下聯動,建立健全政府、企業、行業組織和產業聯盟、智庫等的協同推進機制,加強在技術攻關、標準制定等方面的協調配合。加強部省合作,依托國家新型工業化產業示范基地建設等工作,支持有條件的地區發揮自身資源優勢,培育一批人工智能領軍企業,探索建設人工智能產業集聚區,促進人工智能產業突破發展。面向重點行業和關鍵領域,推動人工智能標志性產品應用。建立人工智能產業統計體系,關鍵產品與服務目錄,加強跟蹤研究和督促指導,確保重點工作有序推進。

(二)加大支持力度

充分發揮工業轉型升級(中國制造2025)等現有資金以及重大項目等國家科技計劃(專項、基金)的引導作用,支持符合條件的人工智能標志性產品及基礎軟硬件研發、應用試點示范、支撐平臺建設等,鼓勵地方財政對相關領域加大投入力度。以重大需求和行業應用為牽引,搭建典型試驗環境,建設產品可靠性和安全性驗證平臺,組織協同攻關,支持人工智能關鍵應用技術研發及適配,支持創新產品設計、系統集成和產業化。支持人工智能企業與金融機構加強對接合作,通過市場機制引導多方資本參與產業發展。在首臺(套)重大技術裝備保險保費補償政策中,探索引入人工智能融合的技術裝備、生產線等關鍵領域。

(三)鼓勵創新創業

加快建設和不斷完善智能網聯汽車、智能語音、智能傳感器、機器人等人工智能相關領域的制造業創新中心,設立人工智能領域的重點實驗室。支持企業、科研院所與高校聯合開展人工智能關鍵技術研發與產業化。鼓勵開展人工智能創新創業和解決方案大賽,鼓勵制造業大企業、互聯網企業、基礎電信企業建設“雙創”平臺,發揮骨干企業引領作用,加強技術研發與應用合作,提升產業發展創新力和國際競爭力。培育人工智能創新標桿企業,搭建人工智能企業創新交流平臺。

(四)加快人才培養

貫徹落實《制造業人才發展規劃指南》,深化人才體制機制改革。以多種方式吸引和培養人工智能高端人才和創新創業人才,支持一批領軍人才和青年拔尖人才成長。依托重大工程項目,鼓勵校企合作,支持高等學校加強人工智能相關學科專業建設,引導職業學校培養產業發展急需的技能型人才。鼓勵領先企業、行業服務機構等培養高水平的人工智能人才隊伍,面向重點行業提供行業解決方案,推廣行業最佳應用實踐。

(五)優化發展環境

開展人工智能相關政策和法律法規研究,為產業健康發展營造良好環境。加強行業對接,推動行業合理開放數據,積極應用新技術、新業務,促進人工智能與行業融合發展。鼓勵政府部門率先運用人工智能提升業務效率和管理服務水平。充分利用雙邊、多邊國際合作機制,抓住“一帶一路”建設契機,鼓勵國內外科研院所、企業、行業組織拓寬交流渠道,廣泛開展合作,實現優勢互補、合作共贏。